监测原理
- 监测参量的选取
- 监测刀具磨损和破损的方法很多,可分为直接测量法和间接测量法两大类。直接测量法主要有:光学法、接触电阻法、放射性法等。间接测量法主要有:切削力或功率测量法,刀具和工件测量法,温度测量法,振动分析法,AE法,电机电流或功率测量法等。
- 比较现有的刀具磨损和破损的监测方法,各有优缺点,我们选取声发射(AE)和电机电流信号作为监测参量。这是因为AE信号能避开机加工中噪声影响最严重的低频区,受振动和声频噪声影响小,在感兴趣区信噪比较高,便于对信号进行处理。响应速度快,灵敏度高;但重负荷时,易受干扰。而电机电流信号易于提取,能适应所有的机加工过程,对正常的切削加工没有影响,但易受干扰,时间响应慢,轻负荷时,灵敏度低。这样,同时选AE和电机电流为监测信号,就能利用这2个监测量的各自长处,互补不足,拓宽监测范围,提高监测精度和判别成功率。
- 监测原理
- 切削过程中,当刀具发生磨损和破损时,切削力相应发生变化,切削力的变化引起电机输出转矩发生变化,进而导致电机电流发生相应的变化,电流法正是通过监测电机电流的变化,实现间接在线实时判断刀具的磨损和破损。
- AE是材料或结构受外力或内力作用产生变形或断裂时,以弹性波形的形式释放出应变能的现象。它具有幅值低,频率范围宽的特点。试验及频谱分析发现:正常切削产生的AE信号主要是工件材料的塑性变形,其功率谱分布,100kHz以下数值很大,100kHz以上较小。当刀具磨损和破损时,100kHz以上频率成分的AE信号要比正常切削时大得多,特别是100-300kHz之间的频率成分更大些。为此,应通过带通滤波器,监测100-300kHz频率成分AE信号的变化,对刀具磨损和破损进行监测。
- 利用AE、电机电流信号综合对刀具磨损和破损进行判别的原理是:轻负荷区,依靠AE包络信号,用阈值的方法进行判别;在中负荷区,这时电机电流和AE信号都起作用,用两者结合的方法进行判别,提高判别的成功率,具体方法是:如果AE信号超过AE阈值,则置延时常数为ds(d的数值依赖于系统构成),如果在ds时间内,电流信号也超过电流信号的阈值,则判刀具极限磨损或破损。如果在ds时间内,电流信号未超过电流信号的阈值,则不报警,由延时常数继续监测。这种以AE为先导,AE信号和电机电流信号进行“与”的判别模式,既利用了AE信号具有实时、灵敏的特点,又考虑了电机电流信号具有滞后的性质,具有较强的抗干扰能力,提高了判别成功率。在大负荷区,则以电机电流信号为主,AE信号为辅进行判别。
- 监测原理框图
- 下图为监测系统的线路框图。中间一路为电网电压监测线路,通过对电源的波动进行监测,消除由于电网电压波动对监测的影响,提高系统的抗干扰能力。图中虚线部分为自动减去首切电流线路,目的是自动减去首切电流,以电流的变动量为判别量,提高电流信号监测的灵敏度。
刀具磨损和破损监测线路框图- 电流信号的实际判别公式如下:
I=(Ia-Ib)-F(Va-Vb) - 式中:I为判别电流值;F为电压变化引起电流变化的比率,主要为消除电流、电压硬件线路放大倍数的不一致;Va、Va分别为监测过程中采样的电流和电压值;Ib、Vb则为开始切削时的电流和电压值。
实验过程和结果
- 在CA6410车床上的钻孔及车削外圆实验
- 为模拟在加工中心上钻孔,钻头装夹在车床主轴卡盘上,工件夹在刀架上,钻孔实验时,钻头旋转,工件自动进给,AE传感器安装在小刀架上。实验钻削参数为:钻头转速n=900-1120r/min,进给量s=0.028-0.039mm/r、s=0.1mm/r。用直径f2.5mm以上钻头钻削23次,用直径f25mm以下钻头钻削80次,总计钻削23+80=103次,结果误报1次,漏报2次,判断成功率为97%。
- 车削外圆实验时,在40Cr钢和45钢的圆棒(f800mm×600mm)试件上轴向每隔20-30mm埋入直径f1.5mm的钻头,为的是在正常外圆车削实验过程中加速刀具的破损。实验车削参数为:主轴转速n=800r/min,刀具进给量s=0.2mm/r,切削深度ap=1-2mm。在60次破损纪录中的判断成功率为96.7%。
- 在Z512-D台钻上的钻孔实验
- 工件材料为45钢,钻孔直径f0.8-2.5mm。,钻头转速n=480r/min,手动进给,钻孔30次,误判2次,判断成功率为93.3%。